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ABSTRACT 

It is not possible to separate simply the influences of a slow mass transfer kinetics and of a slow kinetics of adsorptiondesorption on 
the elution profile of a component. Four kinetic models of chromatography are studied: (i) the Thomas or reaction model, which 
assumes Langmuir kinetics of adsorption-desorption and no axial dispersion; (ii) the reaction-dispersive model, which uses the same 
Langmuir kinetics as the Thomas model but assumes a finite axial dispersion; (iii) a transport model, which uses the linear solid film 
driving force model to account for a slow kinetics of mass transfer and assumes no axial dispersion; and (iv) a transport-dispersive 
model, using the same mass transfer kinetics as the transport model and assumes finite axial dispersion. The analytical solution of the 
Thomas model can be fitted, with an accuracy which exceeds the precision of experimental measurements, on bands calculated using 
either one of the other three kinetic models of chromatography. Thus, the Thomas model, which assumes a slow adsorption-desorption 
kinetics and infinitely fast mass transfer kinetics, accounts very well for profiles calculated with a model making the reverse assumption. 
However, the values of the lumped kinetic coefficient obtained by curve fitting depend on the sample amount. Thus, the examination of 
an elution profile and its fitting to a model do not permit an easy solution of the inverse problem of chromatography. 

INTRODUCTION 

A number of different kinetic models have been 
introduced in linear chromatography [l-4]. Closed- 
form solutions for these models or their solutions in 
the Laplace domain have been derived, the general 
equations of chromatography being greatly simpli- 
lied by the assumption of a linear isotherm. It has 
been shown that, provided the number of transfer 
units is not very small, the results of all these models 
are equivalent and that their solution is well approx- 
imated by a Gaussian profile [4-71. Further, this 
common result is equivalent to the results of the 
equilibrium-dispersive'model [ l&9] and of the plate 
theory [5,10], provided that the proper apparent 
number of transfer units be used. 
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The elution profile of a component is the distribu- 
tion of the residence times of its molecules. As for all 
distributions, a variance can be defined for the 
elution profile. Glueckauf [7j showed that a contri- 
bution to this variance can be calculated for each in- 
dependent source of band broadening and that these 
contributions are simply additive. Van Deemter et 
al. [5] also established this rule of additivity. They 
simplified the analytical solution of Lapidus and 
Amundson [l] .in the case of a non-equilibrium 
model of linear chromatography and showed that, if 
the rate-controlling step of the mass transfer kinetics 
in the chromatographic column is not very slow, this 
solution can be reduced to a Gaussian profile. By 
comparing their simplified solution with that of the 
plate theory [lo], they derived a landmark relation- 
ship between the height equivalent to a theoretical 
plate of the plate model, the axial dispersion coeffi- 
cient and the lumped mass transfer coefficient of 
their linear driving force model. 
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Using a completely different approach, the mo- 
ment analysis, Kucera [2] and Kubin [3] demon- 
strated also the additivity of the different contribu- 
tions to band broadening. This demonstration is 
based on the solution of the general rate model of 
linear chromatography in the Laplace domain. The 
solution cannot be inverted into the time domain, 
but the moments of the distribution in the time 
domain can be calculated. Giddings [6], using the 
rate theory, derived the same additivity rule. The 
most general analysis of the dependence of the 
height equivalent to a theoretical plate in linear 
chromatography on the experimental conditions is 
due to Horvath and Lin [l 11. Contributions for all 
the known contributions to the mass transfer resis- 
tance have been discussed. 

In the course of these investigations, several 
general kinetic models have been used. These models 
can be extended to non-linear chromatography, 
where the isotherm is no longer linear. The purpose 
of this work is a comparison between the results 
given by these different models in non-linear chro- 
matography and the search for whether, and under 
which conditions, they could be equivalent, as they 
are in linear chromatography. 

THEORY 

Chromatography is a complex combination of 
phenomena, involving the dynamic transfer, under 
conditions which are often close to equilibrium but 
never achieve it, of a pulse of a mixture of compo- 
nents along a column. In this study, however, we 
consider only the simplest possible case, the migra- 
tion of a pulse of a pure compound. The column is 
packed with porous particles between which flows a 
mobile phase in which the component is soluble. 
The component has free access to the inside of the 
porous particles. During its migration, the compo- 
nent experiences transfer between the mobile phase 
and the surface of an adsorbent. The band profile 
depends on the equilibrium isotherm and on the 
different phenomena which act to broaden the band, 
axial dispersion, diffusion across the mobile phase 
stream, resistance to mass transfer across the exter- 
nal film around the particles, intraparticle diffusion 
and kinetics of adsorption-desorption. 

Different chromatographic models attempt to 
model the band migration in different ways. They 

can be grouped in two classes of models. The general 
rate models consider a more or less complex array of 
kinetic equations and make a detailed analysis of the 
various steps involved in the chromatographic pro- 
cess. The lumped rate models consider only one 
kinetic process, regarded as the rate-controlling 
step, or at most a few such processes, and they lump 
in the rate constant the contributions of the kinetics 
of the other processes. 

General rate model 
A general rate model of chromatography uses two 

mass balance equations, one in the mobile phase 
outside the particle and the other in the stagnant 
mobile phase inside a particle, and two kinetic 
equations, one relating the two mobile phase con- 
centrations (mass transfer kinetics) and the other 
relating the stagnant mobile phase and the station- 
ary phase concentrations (kinetics of adsorption- 
desorption). 

External mass balance equation. The differential 
mass balance equation of the solute in the stream of 
mobile phase around the particles can be written as 

(1) 

where u is the mobile phase linear velocity, F = 
(1 - ae)/ee is the phase ratio, E, is the external 
porosity of the column, DL is the axial dispersion 
coefficient, C is the mobile phase concentration in 
the interparticle stream, CS is the stationary phase 
concentration averaged over the entire particles and 
i3Qat is the rate of adsorption averaged over an 
entire particle. For a spherical particle, 

RP 

Cs = -$ r’C,dr 
P s 

0 

where R, is the particle radius. For a spherical 
particle, we have 

aC, 3 
at -%’ 

No (3) 

where NO is the mass flux of solute from the bulk 
solution through the external surface of the particle. 
The boundary condition at the external particle 
surface is given by 
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iv0 = DP.%&?p = kf(C - Cplr=R,) (9 

where kf is the external mass transfer coefficient. 
The Danckwerts-type initial and boundary condi- 

tions in the mobile phase are given by 

C(z,O) = 0 (4b) 

& = 0 

uC(0, c) = UC,(?) + DL * !$ 

(4c) 

(44 

Intraparticle mass balance equation. The differen- 
tial mass balance equation of the solute in the 
particle yields 

E&%+(1 -E&J+& 
( 

d2C 
a/ 

2 ac, 
T+;‘a 

> 
(5) r 

where sp is the internal porosity of the packed bed, 
D, is the diffusion coefficient of the solute inside the 
pores of the particles and C, and C, are the solute 

’ concentrations in the solution inside the pores and in 
the stationary phase, respectively. The boundary 
conditions for the particle is the symmetrical condi- 
tion 

The initial condition is 

C, = C,(r,O)att = 0 

For a pulse injection, we have 

(6b) 

C(O,t) = CaforO < t < t, 

C(O,t) = Ofort, < t 

(7a) 

(7b) 

Kinetic equation. If we may assume that the 
kinetics of adsorption-desorption are infinitely fast, 
the concentrations of the solute in the mobile phase 
contained in the pores and in the stationary phase 
are related through the equilibrium isotherm, C, = 
AC,). If these kinetics are slow, they are related 
through the kinetic equation. For example, for a 
linear isotherm and slow kinetics of adsorption- 
desorption with a first-order rate, we have 

ac, 
- = kadcp - cp) = kdcp - G/&J at (8) 

where kads and K, are the adsorption rate constant 
and the adsorption equilibrium constant (Henry 
constant), respectively, and C, is the liquid concen- 
tration in equilibrium with the stationary phase 
concentration, CP = CJK,. 

Solution of the general rate model. Kubin [3] and 
Kucera [2] derived in the Laplace domain the 
analytical solution of the system of eqns. l-8 of the 
general rate model of linear chromatography just 
presented. This solution cannot be inverted in the 
time domain, but they could derive from it the 
moments of the retention time distribution which 
constitute the elution band profile. More recently, 
Lenhoff [4] calculated the elution band profile in the 
time domain by numerical evaluation of the inverse 
Laplace transform. 

General rate models coupled to a non-linear 
isotherm have been studied in detail by Wang and 
co-workers [12-l 41, using the method of orthogonal 
collocation for the numerical calculation of solu- 
tions. The general rate model considering an infinite 
rate of adsorptiondesorption and a non-linear 
isotherm was solved numerically by Yu and Wang 
[12] and by Lee et al. [13]. Later, this model was 
extended to the case of slow adsorption-desorption, 
possibly involving also reactions in the mobile or 
stationary phases, with a slow reaction rate [14]. Lin 
and Ma [15] solved numerically, by orthogonal 
collocation, a simpler pore diffusion model, con- 
sidering only intraparticle diffusion and axial dis- 
persion, ignoring the diffusion through the external 
film around the particles, but including the influence 
of non-uniform particle size by taking the particle 
size distribution into accounj. 

Lumped model of chromatography 
The general rate model of chromatography just 

discussed is a complete and correct model of the 
chromatographic process. It accounts for all the 
known contributions, whether of thermodynamic or 
kinetic origins, to the elution band profile. Un- 
fortunately, the prediction of the band profiles in 
any real case requires the prior knowledge, determi- 
nation or evaluation of a number of parameters 
(e.g., isotherm coefficients, rate constants, mass 
transfer coefficients). Accordingly, the optimization 
of the experimental conditions for maximum pro- 
duction rate (let alone for minimum production 
cost!) becomes extremely complex when using this 
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model. To simplify the solution of the problem of 
non-linear chromatography, several simpler kinetic 
models have been introduced. These models are 
extensions of models which were successfully used in 
linear chromatography. 

Thomas model. The simplest lumped model is due 
to Thomas [16]. Like the ideal model, the Thomas 
model ignores the axial dispersion (i.e., DL = 0 in 
eqn. 1) and the mass transfer kinetics. It could be 
called a reaction model. It assumes, however, that 
the rates of adsorption and desorption are finite and 
given by the second-order Langmuir kinetics: 

ac 
2 = k,(qs - C,)C - k& 
at 

where k, and kd are the rate constants of adsorption 
and desorption, respectively, and qs is the specific 
saturation capacity of the adsorbent, or amount 
needed to form a saturated monolayer. Because of 
the difference between the kinetic models used, there 
is no reason for kads (eqn. 8) to be equivalent to k, 
(eqn. 9). As we assume that the mass transfer 
kinetics are very fast, C (eqn. 1) and C, (eqn. 5) are 
equivalent. Thomas derived a closed-form solution 
for his model in the case of a step function input, i.e., 
for the frontal analysis problem [16]. Later, Gold- 
stein [17] derived an analytical solution of the 
Thomas model in the case of a pulse injection of any 
width, finite of not. More recently, Wade et al. [18] 
studied the solution of the Dirac problem, in which 
case the input function is an impulse or rectangular 
pulse of infinitely narrow width. They found that 
this problem has a solution simpler than Goldstein’s, 
and compared it with experimental results obtained 
in affinity chromatography, a mode of separation in 
which the effects of a slow adsorption-desorption 
Kinetics may often offset the effects of both axial 
dispersion and the resistances to mass transfer. 

In the’case of an impulse input, the solution given 
by Wade et al. [ 181 can be written as [19] 

C 1 _ e-Nr..L~ 
-= N,,,J:I, (2N,,,dZ)e - Nrdr + ‘) 
co PoNr,,Lf ’ 1 - T(N,,,, Nreaz) (1 - e - NrcaLf) 

or 
(104 

C 1 _ ,-N.&r 
-= Nr,,~~Il(2Nr,,J7)e- Nr=dr+ l) 
C di.0 NreaLf * 1 - T(N,,,, N,_z) (1 - e-N=aLf) 

(lob) 

where z = (t - tO)/(tR.O - to) is a dimensionless 
time, Co = ApIt = n/&SL and Cdi,O iS a reference, 
dimensionless concentration obtained by dividing 
the amount injected by the product of the column 
hold-up volume and the retention factor of the 
component studied at infinite dilution, also equal to 
the ratio of the area of the input profile to the net re- 
tention time at infinite dilution [Cdi,O = n/&Lkb = 

A,lkbto = Cptpi(h,o - to) = C,to]. n (mol) is the 
amount of solute injected, S and L are the column 
cross-section area and length, respectively, A, = 
Cptp is the area (conservative) of the rectangular 
pulse of solute injected, C, being the solute concen- 
tration, and t, the time width. In eqns. 10, I,(X) is the 
first-order modified Bessel function of the first kind, 
and T(u,v) is a Bessel function integral [17-191. Eqn. 
lob is convenient as it gives a normalized profile 
depending only on two parameters, and we see that 
the dimensionless elution profile (i.e., the plot of 
C/Cdi,O versus 7) depends only on two parameters, 
the loading factor, Lf [19], and the reaction (or 
adsorption-desorption) number of transfer units, 
N,,, = kbk,L/u. If the pulse width is finite, the. 
solution derived by Goldstein [17] applies, and it 
depends on one additional parameter, the reduced 
injection pulse width, ~~ = tp/(tR.O - to). 

Reaction-dispersive model. More recently, an ex- 
tension of the Thomas model, the reaction-disper- 
sive model of chromatography, has been suggested 
[19]. In this model, we use a single mass balance 
equation and a kinetic equation. The mass balance 
equation is written as 

ac ac u.--+~+F+D~.~~ 
aZ a22 (11) 

where C and C, are the concentrations of the 
component in the mobile and stationary phases, 
respectively, and D, is the apparent dispersion 
coefficient, related to the axial dispersion coeffi- 
cient, D, and to the lumped mass transfer coefficient, 
kf. Any proper kinetic equation can be used in this 
model. For the sake of comparison with the Thomas 
model, we may assume the Langmuir kinetic equa- 
tion, eqn. 9. The model has no analytical solution. A 
numerical solution can be obtained easily, using the 
finite difference method [19,20]. The solutions of the 
reaction-dispersive model for a narrow injection 
pulse depend on three parameters, the loading 
factor. Lf. and two kinetic parameters. the reaction 
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number of transfer units, N,,, = tiOkdLlu, and 
the dispersion number of transfer units, NnisP = 
Lu/2D,. When D, = 0, the reaction-dispersive mod- 
el reduces to the Thomas model and the solution is 
obtained using either the Goldstein (finite pulse 
width) or the Wade et al. (impulse) solution. 

Transport and transport-dispersivemodels. Instead 
of assuming slow kinetics of adsorption-desorption 
and very fast kinetics of mass transfer, we may as 
well assume very fast kinetics of adsorption-desorp- 
tion and slow kinetics of mass transfer. An attractive 
kinetic model of chromatography combines a mass 
balance equation (eqn. 11) and the kinetic equation 
of the solid film linear driving force model [21,22]. 
Now, we have the following system: 

ac ac ac, a2c 
u.~+~+F.~=D,.~ 

ac, 
at = k&* - Cd 

(124 

where kf is the lumped mass transfer coefficient and 
q* is the stationary phase concentration in equilibri- 
um with the local mobile phase concentration, as 
given by the isotherm equation. The analytical 
solution of this model in the case of a linear isotherm 
has been derived [1,5]. In the case of a non-linear 
isotherm, numerical solutions have been obtained 
using a finite difference procedure [20,23,24]. In this 
case, the band profile depends on Lf, NDisp and 
another kinetic parameter, the number of transfer 
units, N, = k&, where St is the Stanton number, 
St = kfLluO. If we assume DL = 0 in eqn. 12a, we 
have a transport model, and the band profile 
depends only on Lf and N,. If DL is different from 0, 
we have a transport-dispersive model. 

Thus, we have a series of similar models, which 
differ essentially by the nature of the step in the 
global mass transfer which is considered as the 
slowest and may control the entire kinetics of 
the chromatographic process and depending on 
whether the axial dispersion is neglected or not. We 
now compare the solutions of these models for a 
non-linear isotherm. 

RESULTS AND DISCUSSION 

In all the cases discussed here, we have assumed in 
the calculations a narrow injection plug width, 20 ~1, 

so we can compare directly the profiles obtained by 
numerical integration and by the Wade et al. [ 181 
equation. For wider injection plugs, the Goldstein 
equation [17] could also be used, but it requires the 
evaluation of four Bessel function integrals instead 
of one, rendering the numerical calculation as 
complex and possibly slower than straightforward 
numerical integration of the system of partial differ- 
ential equations. 

Comparison between the Thomas model and the 
reaction-dispersive model 

In Fig. 1, we compare two band profiles corre- 
sponding to the same experimental conditions with a 
loading factor Lf = 1% and obtained as analytical 
solution of the Thomas model (dotted line) and 
numerical solution of the reaction-dispersive model 

I 

16 16 

t (mid 

Fig. 1. Comparison between the numerical solution of the 
reaction-dispersive model of chromatography (solid line) and the 
analytical solution of the Thomas model (dotted line). Values of 
parameters; loading factor, Lr = 1%; retention factor, kb = 5; 
Thomas number, N,,, = k&&/u = 2000; corrected efficiency, 
for the reaction-disoersive model: 

for the Thomas model, Nois,, = 00. 
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(solid line). The dimensionless number character- 
izing the kinetics of adsorption-desorption or num- 
ber of reaction units, N,,,, is equal to 2000. 
The dimensionless number characterizing the axial 
dispersion in the reaction-dispersive model is 

2NDiq(&)’ = Pt(&y = 2000 (13) 

with Pe = uL/D,. As expected, the two band 
profiles are different, as the reaction-dispersive 
model takes into account the axial dispersion (axial 
diffusion and mass transfer kinetics) whose effects 
have been neglected in the Thomas model. 

It is interesting to examine now whether it would 
be possible to lump together the two main contribu- 
tions to band broadening, the adsorption-desorp- 
tion kinetics and the axial dispersion. If this is 
possible, we could lit a solution of the Thomas 
model on the solid line in Fig. 1. Of course, the 
values of the kinetic parameters leading to the best 
lit would be different from those corresponding to 
the strict Thomas model. We call N$l this apparent 
value of the number of reaction units which corre- 
sponds to an apparent rate parameter and includes 
the effects of both slow adsorption-desorption and 
finite axial dispersion. 

The calculations were carried out using a three- 
dimensional simplex algorithm with kb, Lf and v&+r 
as the parameters, and fitting the Wade et al. [lS] 
equation for the Thomas model (eqn. 10a) to the 
profile calculated by numerical integration of the 
reaction-dispersive model. In the modified simplex 
approach used [25-271, a method of successive 
estimation of the three parameters (& Lf and N,,,) 
was designed. The band profile computed with the 
Thomas model from a set of values of the three 
parameters is compared with the profile generated 
by the other model by calculating a score measuring 
the degree of similarity between the two profiles. 
Then, an algorithm generates a new set of param- 
eters leading to a new profile. The simplex algorithm 
assures convergence of the similarity between the 
profiles and selects the best set. 

The result of this exercise is shown in Fig. 2, for 
various values of the loading factor, Lf = 1, 5, 10 
and 20%. There is excellent agreement between the 
two curves. In all instances an excellent fit was 
achieved. The best values of the three parameters are 

Fig. 2. Same as Fig. I, except that the parameters of the Thomas 
model were obtained by a best tit of eon. 10a to the numerical 
solution of the reaction-dispersive model (see Table I). Value of 
the loading factor, Lr: (1) 1%; (2) 5%; (3) 10%; (4) 20%. 

given in Table I. There is excellent agreement 
between the “true” values of the retention and the 
loading factors used for the numerical calculation of 
the solutions of the reaction-dispersive model and 
the “best-tit” values derived from the fitting of the 

TABLE I 

BEST PARAMETERS OBTAINED BY FITTING BAND 
PROFILES CALCULATED WITH THE REACTION-DIS- 
PERSIVE MODEL” TO THE THOMAS MODEL” 

5 1 4.994 0.98 954 
5 5 4.992 4.91 865 
1 5 0.993 4.93 865 

20 5 19.98 4.92 865 
5 10 4.986 9.81 798 
5 20 4.968 19.54 690 

a Parameters of the generated profiles: 2[ko/(l + k0)]2iVni.p = 
2000, N,,, = k&L/u = 2000. Hence, N-l);pp = 1000. 

b Parameter of the Thomas model: Nnisp = cu. 
’ Best values of the parameters obtained by curve fitting. 



S. Golshan-Shirazi and G. Guiochon / J. Chromatogr. 603 (1992) l-11 7 

Thomas model to these profiles. The relative differ- 
ences between the true and the calculated values of 
the loading factor and the retention factors are 
constant and close to 2 and OS%, respectively. As 
they are constant, they are probably due to the 
fitting process itself. This agreement is better than 
what can be expected when actual experimental data 
are fitted to a correct model. In a case like that, no 
model error can be detected. On the other hand, as 
expected, the value of x[f is smaller than N,,,. This 
theoretical result is supported by data published by 
Lucy et al. [28]. They recorded experimental band 
profiles at increasing sample sizes for a series of 
compounds and fitted them to the Thomas model. 
They found that the best values obtained for the 
retention factor, KO, and the column saturation 
capacity are nearly independent of the sample size 
while the kinetic parameter is concentration depen- 
dent, which is in agreement with our results. 

The variances of the various contributions to 
band broadening in linear chromatography are 
additive. Thus, in linear chromatography we may 
write 

or 

1 1 1 
(14) 

where N$tPP is the apparent number of reaction 
transfer units and H, HDisp, H,,, and Hreact are the 
total height equivalent to a theoretical plate of the 
column and the contributions of the axial dis- 
persion, the mass transfer kinetics and the adsorp- 
tion-desorption kinetics, respectively. According to 
eqn. 14, the apparent number of transfer units in 
linear chromatography as derived from the reaction- 
dispersive model (eqns. l-7) would be fl&Pp = 
1000. The data in Table I suggest that x!f is not 
constant in non-linear chromatography, but de- 
crease with increasing value of the loading factor. 

Attempts were also made to fit the Thomas model 
to solutions of the reaction-dispersive model corre- 
sponding to lower values of the loading factor, e.g., 
0.2% or less. The agreement between the two 
profiles (not shown) becomes increasingly less satis- 
factory with decreasing values of the loading factor. 
Also, the value of the loading factor obtained by 
curve fitting was increasingly more different from 

the value used in the numerical calculation. The 
same problem was already observed by Lucy et al. 
[28] when attempting to fit experimental band 
profiles on the Thomas model at low values of the 
loading factor. Obviously, at high loading factors, 
the influence of the thermodynamics on the band 
profiles is major and the kinetic influence moderate, 
unless the rates are very slow. When the loading 
factor is small, chromatography is becoming linear 
and the band broadening contributions of kinetic 
origin are dominant. The fitting procedure then fails 
to determine the correct value of the loading factor. 
We conclude that, if isotherm parameters are to be 
determined by fitting an experimental profile to a 
model, the best results will be obtained when using a 
large sample size and strong column overload. 

Similarly, if we change the retention factor, from 5 
to 20 or 1 (results not shown), while keeping the 

t (mid 

Fig. 3. Comparison between a profile obtained as numerical 
solution of the transport model of chromatography (solid line) 
and a profile given by the analytical solution of the Thomas 
model (dotted line). Experimental conditions for the linear 
driving force model: loading factor, Lr = 1%; limit retention 
factor, kb = 5; number of mass transfer stages, N, = k&L/u = 
1000; coefficient of axial dispersion, DL = 0, NDisp = co. The 
parameters of the Thomas model were obtained by fitting eqn. 
10a to the profile obtained by numerical integration of the linear 
driving force model (see coefficients in Table II). Values of the 
loading factor, Lr: (1) 1%; (2) 5%; (3) 10%; (4) 20%. 
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other parameters constant, we can also achieve an 
excellent lit. The values of the parameters obtained 
by this curve fitting are also reported in Table I. The 
change in E0 does not have any effect on the best 
values of either Lf or flepBp. This was expected as the 
retention factor has no influence on the dimension- 
less profile of the band [19]. 

Comparison between the Thomas model and the 
transport model 

In Fig. 3 we compare two series of band profiles. 
The first (solid lines) are calculated using the solid 
film linear driving force model kinetic equation 
(eqn. 12b) and the mass balance of the ideal model 
(eqn. 12a with DL = 0, transport model). These 
calculations were performed assuming a number of 
transfer units, N, = KOkfL/u, equal to 1000. The 
second series of profiles (dotted lines) were calcu- 
lated using the equation derived by Wade et al. [ 181 
as solution of the Thomas model (eqn. 10a). The 
three coefficients of these Thomas profiles are 
selected so as to minimize the difference between the 
two profiles, using a simplex program. The corre- 
sponding parameters of the Thomas model are 
compared in Table II with the parameters used in the 
calculation of the profiles with the linear driving 
force model. A similar comparison is shown in Fig. 
4. In this case, however, the calculated profile was 
obtained with the transport-dispersive model (eqns. 
12a and 12b), with a number of transfer units, N,,,, 

TABLE II 

BEST PARAMETERS OBTAINED BY FITTING THE 
BAND PROFILES CALCULATED WITH THE TRANS- 
PORT* AND TRANSPORT-DISPERSIVE MODELS” TO 
THE THOMAS MODEL’ 

5 1 5.0 0.991 954” 
5 5 4.996 4.952 886’ 
5 5 4.998 4.87 823b 
5 10 4.993 9.91 828” 
5 20 4.995 19.82 727” 

a Parameters of the generated profiles: NDisp = co and N,,, = 
kbkfL/u = 1000. Hence fl;ipr’ = 1000. 

* Parameters of the generated profiles: 2&/(1 + kb)]‘Nor, = 
2000 and N, = kbkfL/u = 2000. Hence q;,“pp = 1000. 

’ Parameter of the Thomas model: Noisp = to. 
’ Best values of the parameters obtained by curve fitting. 

equal to 2000, and a finite coefficient of axial 
dispersion, such that 

z(A)’ = 2NDisp(&)" = 2000 

Thus, in linear chromatography the column effi- 
ciency and the band profiles would be the same as 
for the conditions selected for Fig. 3 (see eqn. 14, 
which gives iV$tPp = 1000). 

Figs. 3 and 4 show that the band profiles obtained 
with the transport and the transport-dispersive 
models can be fitted accurately enough to the 
Thomas model. The data in Table II show a very 
small error, of the order of 0. lo!, for the retention 
factor, &. For the loading factor, the error is ca. 1%. 
Both errors are independent of the loading factor. 
On the other hand, the value obtained for Xit is not 
constant. It is significantly lower than 1000 and it 
decreases with increasing loading factor, whereas in 

15 I? 21 
t (mid 

Fig. 4. Comparison between a profile obtained as numerical 
solution of the transport-dispersive model of chromatography 
(solid line) and a profile given by the analytical solution of the 
Thomas model (dotted line). Same conditions as in Fig. 3 for 
Lf = 5%, except N, = kbkfL/u = 2000, and 2NDi.,[kb/(l + 
kO)]* = 2000. In linear chromatography, the overall band 
broadening would be the same in Figs. 3 and 4. 
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linear chromatography, and from eqn. 14, this value 
would be 1000 for Figs. 3 and 4. 

We conclude from this comparison that it is 
possible to fit experimental data to any of the simple 
kinetic models. Different models will give approxi- 
mately the same values for the limit retention factor 
at infinite dilution, &, and for the loading factor, Lf. 
However, the lumped kinetic parameters derived in 
the process will not remain constant. These param- 
eters appear to be concentration dependent and to 
decrease with increasing concentration or sample 
size. In the following, we discuss the fundamental 
reason why the rate constant determined by fitting 
an experimental profile to a lumped kinetic model is 
concentration dependent. 

Dependence of the lumped kinetic coefficients on the 
sample size 

The dependence of the apparent kinetic param- 
eter on the concentration was discussed by Rhee and 
Amundson [29] in an analysis of the properties of the 
shock layer in frontal analysis. We know that the 
ideal model predicts a concentration shock when- 
ever the equilibrium isotherm is not linear [30]. The 
shock takes place on the band front in the case of a 
convex upward isotherm, the most frequent in liquid 
chromatography. This is due to the fact that, in the 
ideal model, each concentration propagates at its 
own velocity, related to the slope of the isotherm 
for the concentration considered. This velocity 
increases with increasing concentration for a convex 
upward isotherm. The faster high concentrations 
cannot pass the slower low concentrations and a 
concentration discontinuity or shock appears in- 
stead [30,31]. For an actual column, however, a 
concentration shock is impossible. This corresponds 
to an infinitely steep concentration gradient, gener- 
ating an infinite mass flux by diffusion. A very steep 
front appears instead, the shock layer. 

If we assume [29] the existence of a shock layer 
(region of very rapid variation of the concentration 
with the position in the column), write the mass 
balance equation and assume a linear driving force 
model for the kinetic equation of chromatography 
(eqns. 12a and 12b), it is possible to derive, by 
combination of the mass balance and the kinetic 
equation, the following relationship: 

where 1 is the migration velocity of the shock layer: 

1 + FAqIAC 

F is the phase ratio, Aq and AC are the amplitude of 
the concentration change (i.e., shock) in the station- 
ary and mobile phases, respectively, and v is a new 
variable: 

?j = x - At, (17) 

with x = z/L and td = t&/L, dimensionless vari- 
ables, and the function f is given by 

flc; 6, d) = $$(C - 6) - q(6) + q(6) (18) 

where c’ and d are the initial and final concentra- 
tions of the breakthrough curve and AC = C+ - c’. 

Rhee and Amundson [29] showed that the velocity 
of the shock layer is the same as the velocity 
predicted for the shock in the ideal model. It is 
independent of the values of the axial dispersion 
coefficient and the kinetic coefficients. Thus, the 
elution of the mid-point of the breakthrough curve is 
independent of all kinetic influence and depends 
only on the thermodynamics. As can be seen, the 
axial dispersion term, Pe, and the mass transfer 
resistance term, St, have equivalent roles in eqn. 15. 
Their individual contributions add in the first-order 
differential term. In addition, however, there is a 
coupled, second-order differential term. In the prac- 
tice of chromatography, both the Peclet and Stanton 
numbers are large. Hence the first term in the 
left-hand side of eqn. 15 is very small and can be 
neglected. The effects of the axial dispersion and the 
kinetics of mass transfer resistances are additive. 
The band profiles calculated by the equilibrium-dis- 
persive model (infinitely fast mass transfer kinetics 
but finite axial dispersion) and the solid film driving 
force model are the same, provided the axial Peclet 
number of the kinetic model is replaced in the 
equilibrium-dispersive model with an apparent 
Peclet number related to the Peclet and Stanton 
numbers of the linear driving force model by 

1 1 A(1 - n) 

Pe.,,=Pe+ St 

or 

H23+2 
U 

(194 

Wb) 
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where K = F(Aq/AC) is the slope of the chord, 
which is concentration dependent. 

This important result demonstrates that, in non- 
linear as in linear chromatography, the effects of 
axial dispersion and mass transfer resistances are 
additive. Since 1 and Kare concentration dependent, 
however, the apparent axial dispersion term also 
depends on the concentration. This makes the 
situation much more complex in non-linear than in 
linear chromatography. 

We have shown above that the additivity of the 
contributions of the axial dispersion and the mass 
transfer resistances valid in linear chromatography 
also holds in non-linear chromatography, but the 
retention factor, P0 should be replaced with the slope 
of the chord, F(Aq/Ac). In linear chromatography, 
this slope is equal to kb and eqn. 19 becomes 

1 1 kb 

Peapp = pe + (1 + Q2st 

or 

201 2k3.4 

H = u + (1 + &>2kf Gob) 

Eqn. 20, which is valid only for linear chromatogra- 
phy, is exactly the result obtained by Van Deemter et 
al. [5]. 

The previous analysis applies to the combination 
of a finite axial dispersion and slow mass transfer 
kinetics, which can be accounted for using the solid 
film linear driving force model. When the mass 
transfer kinetics are fast but the kinetics of adsorp- 
tion-desorption are slow and can be accounted for 
by the Langmuir model (eqn. 9), we can let b = 
k,/kd and rewrite the second-order Langmuir ki- 
netics as 

ac 
L = k,[bCq, - C,(l + bC)] = kd(l + bC) 
at 

[g$ G] 
(21) 

= k,,(l + bC’) (q* - C,) 

where q* is the stationary phase concentration in 
equilibrium with the mobile phase concentration C. 
For a linear isotherm (i.e., bC -+ 0), eqn. 21 is 
exactly the solid film linear driving force model (eqn. 

S), with kf = kd. These two models are identical in 
linear chromatography. Eqn. 21 shows that, with a 
non-linear isotherm, the Langmuir kinetic model 
can still be written under the general form of the 
solid film linear driving force model, but with a 
kinetic coefficient 

kf = kd(l + bC) (224 

or, conversely, a linear driving force model can be 
written under the general form of the Langmuir 
kinetic model, but with a rate constant 

kf 
kd = ~ 

1 +bC 

In both instances, however, the new rate constant is 
concentration dependent. This is why when a band 
profile is simulated using the transport model (i.e., 
D = 0 and solid film linear driving force kinetics), 
the profile can be fitted to the Thomas model (D = 0 

and Langmuir kinetics). However, the parameters 
supplied by the regression, kd and xff, are concen- 
tration dependent and decrease with increasing 
concentration. 

The equivalence between the kinetic equations of 
the Langmuir model (eqn. 9) and the linear driving 
force model (eqn. 12) has been shown previously by 
Hiester and Vermeulen [32] in the case of the 
breakthrough curve (Riemann problem). They also 
showed that the equivalent rate parameter is concen- 
tration dependent. Arnold and Blanch [33] sug- 
gested that, when slow mass transfer kinetics and 
slow adsorption-desorption kinetics coexist, the 
solution of the Thomas model can still be applied. In 
this instance, however, the apparent number of 
reaction units used should be related to the numbers 
of reaction units and mass transfer units by 

(23) 

As in non-linear chromatography N, depends on 
the concentration, the apparent number of transfer 
units also depends on the concentration. The con- 
centration dependence of the kinetic parameter is 
more consequential in frontal analysis and in dis- 
placement chromatography where the variation of 
concentration is much more important. The maxi- 
mum concentration of a band in elution chromatog- 
raphy is smaller than the step height in the other two 
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methods. Hence the profile of an elution band 
calculated without accounting for the concentration 
dependence of the kinetic parameter is close to the 
actual band profile, especially when the column 
efficiency is significant [34]. 
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